T. Wadayama, S. Takabe. “Proximal Decoding for LDPC Codes”, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, Vol. E106-A, No. 3, pp. 359-367, Mar. 2023.
S. Takabe, T. Wadayama, “Convergence Acceleration via Chebyshev Step: Plausible Interpretation of Deep-Unfolded Gradient Descent”, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, Vol. E105A, No. 8, pp. 1110-1120, 2022.
T. Wadayama and S. Takabe, “Chebyshev Periodical Successive Over-Relaxation for Accelerating Fixed-Point Iterations,” IEEE Signal Processing Letters, vol. 28, pp. 907-911, 2021
S. Takabe, Y. Yamauchi, and T. Wadayama, ”Deep-Unfolded Sparse CDMA: Multiuser Detector and Sparse Signature Design,” IEEE Access, vol.9, pp. 40027-40038, 2021
S. Takabe, T. Wadayama, and M. Hayashi, “Asymptotic Behavior of Spatial Coupling LDPC Coding for Compute-and-Forward Two-Way Relaying,” IEEE Transactions on Communications, vol. 68, no. 7, pp. 4063-4072, 2020
S. Takabe, M. Imanishi, T. Wadayama, and K. Hayashi, “Trainable Projected Gradient Detector for Massive Overloaded MIMO Channels: Data-driven Tuning Approach,” IEEE Access, vol. 7, pp. 93326-93338, 2019, arXiv
S. Takabe, T. Nakano, and T. Wadayama, “Fault Tolerance of Random Graphs with respect to Connectivity: Mean-Field Approximation for Semi-dense Random Graphs,” Physical Review E, 99, 050304(R), arXiv(updated)
S. Takabe and T. Wadayama, “Approximation Theory for Connectivity of Ad Hoc Wireless Networks with Node Faults,” IEEE Wireless Communication Letters, vol. 8, no. 4, 1240, 2019.
D. Ito, S. Takabe, and T. Wadayama, “Trainable ISTA for Sparse Signal Recovery,” IEEE Transactions on Signal Processing, Vol. 67 , no. 12, pp. 3113-3125, 2019. [TSP featured article]
S. Takabe, T. Maehara, and K. Hukushima, “Typical Approximation Performance for Maximum Coverage Problem,” Physical Review E, 97, 022138 (2018), arXiv
J. Takahashi, S. Takabe, and K. Hukushima, “An exact algorithm exhibiting RS-RSB/easy-hard correspondence for the maximum independent set problem,” Journal of the Physical Society of Japan, 86, 073001 (2017), arXiv
S. Takabe and K. Hukushima, “Typical Performance of Approximation Algorithms for NP-hard Problems,” Journal of Statistical Mechanics: Theory and Experiment, 2016, 113401, (2016), arXiv
S.Takabe and K. Hukushima, “Statistical-mechanical Analysis of Linear Programming Relaxation for Combinatorial Optimization Problems,” Physical Review E 93, 053308 (2016), arXiv
S. Takabe and K. Hukushima, “Typical Behavior of the Linear Programming Method for Combinatorial Optimization Problems: A Statistical-mechanical Perspective,” Journal of the Physical Society of Japan 83, 043801 (2014), arXiv
S. Takabe and K. Hukushima, “Minimum vertex cover problems on random hypergraphs: replica symmetric solution and a leaf removal algorithm,” Physical Review E 89, 062139 (2014), arXiv
T. Wadayama, S. Takabe. “Asymptotic Mean Squared Error of Noisy Periodical Successive Over-Relaxation”, IEEE International Symposium on Information Theory, Vol. 2022-June, pp. 2273-2278, 2022.
S. Takabe and T. Wadayama, “Deep Unfolded Multicast Beamforming,” 2020 IEEE Global Communications Conference (Globecom2020), 2020,DOI:10.1109/GLOBECOM42002.2020.9322114, arXiv
S. Takabe, Y. Yamauchi, and T. Wadayama, “Trainable Projected Gradient Detector for Sparsely Spread Code Division Multiple Access,” 2020 IEEE International Conference on Communications (ICC2020) workshop, DOI:10.1109/ICCWorkshops49005.2020.9145193, arXiv
S. Takabe, T. Wadayama, and Y. C. Eldar, “Complex Trainable ISTA for Linear and Nonlinear Inverse Problems,” 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP2020),
DOI:10.1109/ICASSP40776.2020.9053161, arXiv(updated)
S. Takabe, T. Wadayama, and M. Hayashi, “Asymptotic Analysis on LDPC-BICM Scheme for Compute-and-Forward Relaying,” 2019 IEEE International Symposium on Information Theory (ISIT2019), arXiv
T. Wadayama and S. Takabe, “Deep Learning-Aided Trainable Projected Gradient Decoding for LDPC Codes,” 2019 IEEE International Symposium on Information Theory (ISIT2019), arXiv
S. Takabe , M. Imanishi, T. Wadayama, and K. Hayashi, “Deep Learning-Aided Projected Gradient Detector for Massive Overloaded MIMO Channels,” IEEE International Conference on Communications (ICC2019), arXiv (updated)
S. Takabe and T. Wadayama, “Connectivity of Ad Hoc Wireless Networks with Node Faults,” 2018 IEEE Global Communications Conference (Globecom2018), 2018 arXiv
T. Wadayama and S. Takabe, “Joint Quantizer Optimization based on Neural Quantizer for Sum-Product Decoder,” 2018 IEEE Global Communications Conference (Globecom2018), 2018, arXiv
S. Takabe and T. Wadayama, “k-connectivity of Random Graphs and Random Geometric Graphs in Node Fault Model,” International Symposium on Information Theory and Its Applications (ISITA2018) Singapore, 2018, arXiv (*best paper award)
S. Takabe, Y. Ishimatsu, T. Wadayama, and M. Hayashi, “Asymptotic Analysis on Spatial Coupling Coding for Two-Way Relay Channels,” 2018 IEEE International Symposium on Information Theory (ISIT2018), Vail , CO, arXiv
D. Ito, S. Takabe, and T. Wadayama, “Trainable ISTA for Sparse Signal Recovery,” IEEE International Conference on Communications(ICC2018) workshop, Kansas City, MO, arXiv
T. Wadayama and S. Takabe, “Chebyshev Inertial Landweber Algorithm for Linear Inverse Problems,” arXiv
S. Takabe and T. Wadayama, “Theoretical Interpretation of Learned Step Size in Deep-Unfolded Gradient Descent,” arXiv
T. Wadayama and S. Takabe, “Chebyshev Inertial Iteration for Accelerating Fixed-Point Iterations,” arXiv
S. Takabe, T. Wadayama, A. Vazquez-Castro, and Masahito Hayashi, “Compute-and-forward relaying with LDPC codes over QPSK scheme,” arXiv
S. Takabe, K. Hukushima, and A. K. Hartmann, “Large-deviation Properties of Linear-programming Computational Hardness of the Vertex Cover Problem,” arXiv
(2022年以降は研究室のHPを参照)
和田山正,高邉賢史,「LDPC符号化されたMassive MIMO通信路のための近接射影復号法」(口頭,電子情報通信学会情報理論研究会,オンライン,2021)
水越朝陽,高邉賢史,和田山正,「チェビシェフステップを用いた射影勾配MIMO信号検出法」 (口頭,電子情報通信学会情報理論研究会,オンライン,2021)
横山健人,高邉賢史,和田山正,「多変量ガウスベクトル再現のための次元削減行列の構成」 (口頭,電子情報通信学会情報理論研究会,オンライン,2021)
高邉賢史,「信号処理における深層展開型アルゴリズムの進展と理論解析」(口頭,統計物理と統計科学のセミナー, 2020)[招待講演]
高邉賢史,和田山正,「深層展開型勾配法の収束加速現象の解析と応用」(口頭,第23回情報論的学習理論ワークショップ (IBIS2020),2020)
高邉賢史,和田山正,「一般化ランダム幾何グラフにおける次数相関の解析」(口頭,日本物理学会秋季大会,2020)
山内友稀,高邉賢史,和田山正,「深層学習技術を利用した複素領域スパースCDMA検出に関する検討」(口頭,電子情報通信学会情報理論研究会,2020)
和田山正,高邉賢史,「Proximal Decoding for LDPC-Coded Massive MIMO Channels」(口頭,誤り訂正符号のワークショップ,2020)
高邉賢史,和田山正,「深層展開による勾配法の収束加速に関する理論的考察」(口頭,電子情報通信学会信号処理研究会,2020)
高邉賢史,「信号処理・無線通信に対する深層展開型アルゴリズムの進展」(口頭,電子情報通信学会信号処理研究会,2020)[招待講演]
横山健人,高邉賢史,和田山正,「画像再構成のための自己符号化器を収縮関数に用いた学習型ISTAに関する検討」(口頭,電子情報通信学会情報理論研究会,2020)
高邉賢史,和田山正,「大規模MIMOのための深層展開型ビームフォーミング法の検討」(口頭,電子情報通信学会無線通信システム研究会,2020)
高邉賢史,「無線通信に対する深層展開アルゴリズムの進展」(口頭,電子情報通信学会スマート無線研究会,2020)[依頼公演]
高邉賢史,和田山正,「ランダム幾何グラフ上の確率的ノード除去モデルの連結性に対する平均場解析」(口頭,日本物理学第75回会年次大会,2019)
高邉賢史,「確率的なノード除去に伴うランダムグラフの連結性の相転移現象」(口頭,水戸数学情報数理研究会2019「連結の数理」, 2019)
山内友稀,高邉賢史,和田山正,「深層学習技術を利用した過負荷スパースCDMA検出に関する検討」(口頭,SITA2019,2019)
仁枝亮太,高邉賢史,和田山正,「深層展開に基づく交互方向乗数法の学習」(高等,第22回情報論的学習理論ワークショップ)
山内友稀,高邉賢史,和田山正,「深層学習技術を利用した過負荷スパースCDMA検出器」(口頭,電子情報通信学会ソサエティ大会,2019)
高邉賢史,和田山正,「複素非線形観測のための学習可能信号復元アルゴリズム」(口頭,日本物理学会秋季大会,2019)
高邉賢史,「計算-転送リレー方式のLDPC符号化変調方式の復号性能解析」(招待講演,口頭,誤り訂正符号のワークショップ,2019)
高邉賢史,和田山正,「複素非線形逆問題のためのComplex-field TISTA」(口頭,情報理論研究会,IT2018-23,東京,2019)
以前の発表はこちらから